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Abstract. Modern Bioinformatics data sources are widely

used by molecular biologists for homology searching and new

drug discovery. User-friendly and yet responsive access is

one of the most desirable properties for integrated access

to the rapidly growing, heterogeneous, and distributed col-

lection of data sources. The increasing volume and diver-

sity of digital information related to bioinformatics (such as

genomes, protein sequences, protein structures, etc.) have

led to a growing problem that conventional data manage-

ment systems do not have, namely �nding which information

sources out of many candidate choices are the most relevant

and most accessible to answer a given user query. We re-

fer to this problem as the query routing problem. In this

paper we introduce the notation and issues of query rout-

ing, and present a practical solution for designing a scalable

query routing system based on multi-level progressive prun-

ing strategies. The key idea is to create and maintain source-

capability pro�les independently, and to provide algorithms

that can dynamically discover relevant information sources

for a given query through the smart use of source pro�les.

Compared to the keyword-based indexing techniques adopted

in most of the search engines and software, our approach

o�ers �ne-granularity of interest matching, thus it is more

powerful and e�ective for handling queries with complex con-

ditions.

1 Introduction

Huge and growing amount of bioinformatics data that reside

in specialized databases today, are accessible over the Inter-

net, most of them with limited query processing capabilities.

The Molecular Biology Database Collection [1, 4], for exam-

ple, currently holds over 500 data sources, not even including

many tools that analyze the information contained therein.

The most popular resources including those concerned with

protein sequences (such as SWISS-PROT, an annotated pro-

tein sequence database, and PIR, the Protein Information

Resource), protein structure (such as PDB, the Protein

Data Bank), genome data (such as AceDB, a Caenorhab-

ditis elegans database), DNA (deoxyribonucleic acid) se-

quences (such as EMBL, the European Molecular Biology

Laboratory and Gen Bank), motifs (such as PROSITE, a

database of protein families and domains, and PRINTS, a

compendium of protein �ngerprints), and sequence match-

ing (such as BLAST (Basic Local Alignment Search Tool)

searches, available at several sites such as NCBI, EMBL,

KEGG, DBJJ, and so forth).

It is widely recognized that Bioinformatics data sources

are extremely helpful in assisting molecular biologists, ge-

neticists, and biochemists to understand the biochemical

function, chemical structure, and evolutionary history of

organisms, and more importantly to use information col-

lected or generated about human genome, such as protein

sequences, DNA sequences, protein structure, chemical com-

pounds, to design drugs to prevent and cure disease.

Bioinformatics data sources over the Internet have a wide

range of query processing capabilities. Most Web-based

sources allow only limited types of selection queries. Data

from one source often must be combined with data from

other sources to give scientists the information they need.

Several data integration systems [5, 4, 11, 13, 3] have been

created to provide users with integrated access and a single

point of contact to multiple, heterogeneous bioinformatics

data sources. One of the critical challenges for providing

integrated access to bioinformatics data sources is the prob-

lem of e�ectively locating the right information from the

right data sources and incorporating newly added capabili-

ties or data sources in answering queries. More concretely,

it is widely observed that not all the bioinformatics data

sources can contribute to a query at any given time. Thus,

it is important to route a query to only those data sources

that are capable of answering the query. We refer to this

problem as the query routing problem [8].

Query routing is a process of directing user queries to ap-
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propriate servers by constraining the search space through

query re�nement and source selection. Concretely, e�ective

query routing not only reduces the query response time and

the overall processing cost, but also eliminates a lot of un-

necessary communication overhead over the global networks

and over the individual information sources.

Query routing is of particular importance to large-scale

bioinformatics query systems for a number of reasons. First,

popular online systems for searching life sciences data (such

as genomic data sources) match queries to answers by com-

paring a query to each of the sequences in the data source.

EÆciency in such exhaustive systems is crucial since some

servers process over 40,000 queries per day [11]. Further-

more resolution of each query often requires comparison to

over one gigabyte of genomic sequence data. While exhaus-

tive systems are practical at present, they are becoming

prohibitively expensive, even with database indexing tech-

niques. Second, di�erent bioinformatics data sources in dif-

fering formats have been set up to support di�erent aspects

of genomics, proteomics, and the drug design process. Some

of these sources are huge and growing rapidly. Statistics

show that bioinformatics data sources are now doubling in

size every 15-16 months, and the number of users and the

query rates are growing as well [6]. Third but not last,

there are growing demands for answering simple key-word

or string matching based queries with comprehensive cate-

gories of information. For instance, cancer researchers may

expect to use an integrated bioinformatics query system to

help identify genes that respond to low-doses of radiation.

This problem is diÆcult because the information required by

the scientists is spread across many independent, Web-based

data sources, each using their own query interfaces with their

own data formats and limited query processing capabilities.

How to locate the relevant data sources that are capable

of answering a query is critical to the performance of any

integrated query system for transparent access to multiple

bioinformatics data sources.

Surprisingly, most existing bioinformatics data integra-

tion systems [2, 3, 5, 10, 4, 13] do not provide the support

for query routing even though some of them o�er sophisti-

cated query optimizations. Queries may be routed to data

sources that are irrelevant or cannot contribute to the an-

swers. As a result, not only is the response of queries de-

layed but also the throughput of the data servers is a�ected,

not mentioning the additional network traÆcs incurred. In

this paper we �rst present an overview of BioZoom and show

how it can be used to integrate access to bioinformatics data

from heterogeneous data sources. Then we introduce the

BioZoom source-pro�le based query routing scheme, includ-

ing the use of source-capability pro�les to capture diverse

and limited source content and query capabilities, and the

multi-level progressive pruning algorithm for locating rel-

evant data sources in answering queries from a large and

growing collection of sources. To illuminate our discussion,

we sketch several research scenarios that substantiate the

need for cross-source queries and query routing based opti-

mization. The main contribution of the paper is the concept

of source-capability based query routing and its multi-level

progressive pruning strategy for selecting the most relevant

data sources in answering a bioinformatics query. We also

report the �rst prototype development e�ort and our initial

experimental result for the query routing algorithm.

2 BioZoom: An Overview

BioZoom is a bioinformatics data integration system that

provides a single coherent framework for integrated access to

a large, distributed collection of bioinformatics information

providers. Before introducing the BioZoom query routing

scheme, we �rst briey overview the BioZoom system ar-

chitecture and understand how the source-capability infor-

mation is collected, and how BioZoom supports integrated

access to multiple heterogeneous data sources. Figure 1

presents a sketch of BioZoom architecrure.
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Figure 1: BioZoom System Architecture Sketch

Let us walk through the system architecture with an ex-

ample of a simple genomic analysis task. To examine a DNA

sequence in alignment with similar sequences from blast data

sources, a scientist must use di�erent tools with three dif-

ferent interfaces and convert the output from each one to a

format acceptable to the next. More concretely, the scientist

may start with a DNA sequence in a text �le, then cut and

paste the DNA sequence text into the search interface of a

Blast data source, say NCBI Blast, to perform a search for

similar sequences. The scientist would need to save results

and extracts sequence identi�ers of best matches manually

and feed the sequence identi�ers into another Web-based

data source, say PDB Blast, to retrieve full-length sequence

text of best matches. Again the scientist needs to save re-



sults and converts format in order to use a command-line

tool to create a multiple sequence alignment [13].

Using BioZoom, the scientist �rst needs to enter the DNA

sequence as the search keyword and select the output options

such as generate a multiple sequence alignment using the

best matches of similar sequences. Once the client manager

parses the query. The level-one query routing will identify

the types of candidate data sources needed to answer this

query. The level-two routing will prune the set of candidate

data sources based on their query capabilities. The adap-

tive query scheduler generates corresponding subqueries to

data sources selected by the �rst two levels of routing, and

de�nes the ordering (schedule) of executing subqueries. The

level-three routing collects the types of dynamic informa-

tion needed for relevance reasoning and perform further ir-

relevance pruning at runtime. The results returned from

selected data sources by the BioZoom runtime system will

feed into the result �ltering and packaging module to per-

form the �nal stage of query fusion. The fused query results

will be returned to the scientist on the screen or delivered in

a �le. The source capability pro�le generator is used to in-

fer the source capability information from the source pro�les

created by the Bio Crawlers, which are Web robots that tra-

verse the Web and look for interesting bioinformatics data

sources and extract their query capabilities.

3 Capability Based Routing

We begin by introducing a motivating example and a predi-

cate metadata model in which user queries, user query pro-

�les, and source pro�les are captured. Then we present the

design of our query routing algorithms.

3.1 The Motivating Example

Bioinformatics sources available over the Internet have di-

verse and yet limited query processing capabilities. Most in-

formation servers, where data actually reside (such as PDB,

NCBI, EMBL), only support limited types of selection or

similarity queries. This introduces some interesting query

processing challenges as illustrated below.

Example 1. Consider a pharmaceutical researcher who

wants to research drugs to combat HIV. To understand the

approach the researcher may take to combat this virus, it is

important to understand how the virus works.

The HIV virus itself is composed of two RNA strands

encased in a protein envelope. The viral envelope has 2 pro-

teins, named gp120 and gp41. The gp120 binds to CD4, a

receptor protein on a type of white blood cell, called CD4+

T cells. The gp41 then causes the fusion of the HIV with

the T cell. After the virus has merged with a cell, the viral

RNA is inserted into the cytoplasm of the cell. Each virus

particle has 2 copies of an RNA genome, which are tran-

scribed into DNA in the infected cell and integrated into

the host cell chromosome with the help of an enzyme called

reverse transcriptase. The viral RNA copies itself into the

DNA of the cell, causing the cell to produce more of the

viral RNA. The RNA transcripts produced from the inte-

grated viral DNA serve both as mRNA to direct the syn-

thesis of the viral proteins and later as the RNA genomes

of new viral particles, which escape from the cell by bud-

ding from the plasma membrane, each in its own mem-

brane envelope. For more details on how HIV operates, see

(http://www.niaid.nih.gov/factsheets/howhiv.htm).

One possible solution is to use drugs to prevent the virus

from attaching to receptors on cells so that other white blood

cells, called killer T cells, can recognize, ingest, and destroy

the viral package before it has a chance to infect a new cell.

There are many ways of developing such drugs. One common

method is experimental; the process is to physically test a

compound against a sample of the virus or of a protein that

the virus binds to. This process may be labor intensive.

In addition, choosing a compound to test is quite diÆcult

because most pharmaceutical companies have a catalogue

of several million compounds making an exhaustive search

extremely slow, tedious, and error-prone. Another way to

develop drugs is search properties of known compounds for

promising candidates. There are several techniques that are

relevant here. First, a researcher may �nd all related pro-

teins to a protein that is known to be involved in a disease

process, such as gp120, or CD4. Second, a researcher may

want to �nd all drug compounds that are similar to a drug

that a�ects the protein they are interested in (for example,

a reverse transcriptase inhibitor or a drug that inhibits the

binding of gp120 to CD4). A third technique is to analyti-

cally determine the e�ect of a drug compound on the protein

and the related proteins. Some e�orts have been made in

modeling how chemical compounds a�ect a protein based on

a computational model of the chemical and protein as well

as with comparisons with known interactions between the

protein and a similar chemical, or between the chemical and

a similar protein.

Consider the example query. First, a researcher may use

PDB to �nd the structure for CD4, gp120, or gp41. Then

the researcher may wish to �nd similar proteins to com-

pare structure, function, or related research. To do this,

he needs to take the sequence encoding of the proteins dis-

cussed above, such as gp120, translate the sequence given

by PDB into a sequence suitable for searching other data

sources. Such a translation is often done by replacing amino

acid names with their single letter encoding. Then he takes

this sequence and submits it to multiple similarity matching

sources. Examples include NCBI's BLAST tool � blastp,

or one of its many mirror sites and other BLAST sites that

are not strict mirrors of NCBI, such as EMBL, DBJJ, or

KEGG. The blast searches will list proteins similar to the

one submitted, as well as how the amino acid sequence aligns

with each of the similar proteins. Finally, all of the relevant

publications, in a literature databases such as PubMed, for

the similar proteins will be gathered. Now the researcher

enters the drug design step. First, he needs to understand



how chemical compounds can a�ect the proteins identi�ed.

The goal here is to �nd a chemical that will inhibit gp120

from binding with the CD4 receptor, while minimizing the

interference with regular cellular function.

Pharmaceutical companies usually maintain a list of

chemical compounds with on the order of a million entries.

Through mathematical modeling, how each compound in-

teracts with the physical structure of each protein identi�ed

with the function of HIV can be predicted (with varying de-

grees of success). Studies of how the chemical has a�ected

the function of similar proteins is another way of predicting

how the chemical will interact of a protein. We can ex-

press a query searching for the proteins identi�ed above as

well as all similar proteins as similar(1; f keyword = "HIV"

^(protein="gp120" _ protein="gp41" _ protein="CD4"g).
This search is fairly complex and cannot be processed by any

known source in one-stop. Thus, to process this query, our

system needs to break down the end-user query into source-

speci�c queries that are executable at individual sites, such

as NCBI, PDB, or EMBL. One possible plan is to break the

query into the following series of queries. (1) Query PDB:

(keyword = "HIV" ^ (protein="gp120" _ protein="gp41"

_ protein="CD4"), obtaining the structure of these known

proteins; (2) For any protein r from the result of (1), con-

vert r into a protein sequence rs; (3) at NCBI execute a

BLAST query for each rs; (4) �lter out all results that are

not with-in a similarity of 1, as de�ned by the BLAST sim-

ilarity measure.

Through this example, we observe two interesting facts.

First, the extraction and use of the PDB and NCBI source

pro�les plays a critical role in routing the query to these

relevant data sources. Second, even simple selection queries

against a single data source across the Internet may have

more complications due to the source-speci�c content and

its limited query capability. The situation becomes more so-

phisticated when we have queries over multiple distributed

data sources that are heterogeneous in both information con-

tent and their query capabilities.

3.2 The Metadata Description Model

The metadata description model [8, 7] is designed to be an

object relational model. Typical components of the meta-

data model are classes, a set of (simple or composite) at-

tributes associated with each class, a class hierarchy de-

scribed by a subclass-superclass partial order. We use a

unary relation to describe each class and a binary relation

to describe each attribute.

We model queries with select, project, join, and union

operations and the built-in comparison predicates such as

�; <;= and 6=. We assume set semantics for queries. For

convenience of our analysis, we consider only conjunctive

queries. A conjunctive query Q consists of a head predicate

with arguments, denoting the result template, and a body,

representing a binding pattern [12] of Q. The arguments

of the predicate that are provided as input parameters of

the query are expected to be bound. The arguments of the

predicate that are produced as outputs of the query are free

variables. We use lower case letters for variable names and

uppercase letters with bars to denote tuples of variables and

constants. We describe a conjunctive query Q by a quadru-

ple (Qfrom; Qin; Qout; Qcond) where Qfrom is the set of vir-

tual types used in Q, Qin is the set of input arguments, Qout

is the set of output arguments, and Qcond is the conjunction

of comparison atoms.

A user may pose queries on the y (without using any pre-

de�ned views or classes). For each user query and the result

patterns, we create a set of virtual object types as its result

place holder, which describes all the arguments used in the

query, including the classes or relations, the data types, the

domain constraints, and the usage (i.e., as input or output

parameter) of the arguments.

Example 2. Consider online BLAST search sites

(sources) for protein sequence similarity, such as NCBI. Sup-

pose we want to search for a similar protein sequence, pro-

tein structure, and related research to the protein gp120,

published in 2001 to better gauge the e�ects of a new drug.

We may express the query Q: �nd similar protein sequence,

protein structure, and related research, for gp120 where pub-

lication year = 2001 as a conjunctive query of the following

form:

query(sq; st; a; t; j) :� Protein(p), Literature(m),

sequence(p; sq), structure(p; st), author(m;a),

year(m;y), title(m;s), journal(m; t),

y = 2001 ^ Similar(p, `gp120').

query(sq; st; a; t; j) is the head of the query, and its argu-

ments protein sequence p, structure s, author a, title t, jour-

nal j are its distinguished variables. In terms of relational

SQL, the distinguished variables of the query correspond

to attributes appearing in the SELECT clause. The rest are

atoms of the body of the query, and are the bounding pat-

tern of the query. Note that the equality predicates in the

WHERE clause are represented by equating variables in dif-

ferent atoms of a conjunctive query. The following is the

internal representation of this conjunctive query:

Qfrom = fProtein(p); Literature(m)g,
Qin = fsequence(p;`gp120'), year(m, 2001)g,
Qout = fsequence(p; sq), structure(p; st); author(m;a),

title(m; t); journal(m; j)g,
Qcond = fBLAST (sq;`gp120'), y = 2001g

The researcher who poses the query does not need to

be aware of what information sources are currently avail-

able and which data schemas or pre-de�ned views should

be used to access them. The data independence as such

allows the query routing to incorporate newly added infor-

mation sources seamlessly into the system without a�ecting

the way how queries are posed and how answers are deliv-

ered, thus higher scalability is achieved, especially when the

collection of information sources available is large and fre-

quently changing.



Before we show how the query is routed to the most rel-

evant data sources, we �rst introduce the concept of source-

capability pro�les, which play a critical role in pruning ir-

relevant data sources.

3.3 The Source Capability Pro�le

A source capability pro�le tells what is in an information

source (content description) and what types of services (ca-

pability description) are provided about its content. It con-

tains not only the content and query capability descrip-

tion but also statistics on the local data (e.g., size of re-

lations), availability of the source with respect to the access

cost and access authorization, as well as update frequency

and capabilities of the source. In addition, each source

may export information about itself by giving values to a

list of meta attributes such as FieldSupported (list of op-

tional �elds), Linkage(the URL where the source should be

queried), ContentSummaryLinkage (the URL of the content

summary of the source). In this section we will focus only on

the source category, content, and query capability descrip-

tions, since they are the essential components of the source

pro�le and are used extensively in each step of the query

routing process.

The category and content description of an information

source describes what is in the information source. The con-

tent description of an information source tells us what types

of objects are in the source. The category description tells us

what type of domain the source data are used for and the IsA

categorization of the source. The source category descrip-

tion often contains information that can be used to verify an

input (selection) condition or �ll in an output parameter of

a query. We model the contents of an information source in

terms of the object types and the object access constraints

that the source objects must satisfy. Each source object type

is described by a unary relation. Each access constraint is

described using a conjunction of built-in comparison atoms

of the form a�v where a is an attribute of a source type and

v is a constant drawn from a domain that is compatible to

the domain of a. We may view a source content description

as a collection of views de�ned over the source.

The query capability description of an information source

tells which types of queries the source can answer about its

content. We model the query capabilities of an informa-

tion source S using capability records, each is denoted by

(Sin; Sout; Scond). Sin denotes the set of permissible input

arguments. Sout denotes the set of permissible output argu-

ments. Scond denotes the logical constraint (^ or _) on the

mandatory input arguments.

In summary, we denote each information source by a

triplet (Scat; Scnt; Sqpd) where Scat denotes the text descrip-

tion of the category of the source, Scnt is a set of source rela-

tions, each may be associated with some access constraints.

Sqpd denotes a set of query capability descriptions, each is

of the form (Sin; Sout; Scond) (see Figure 4).

Consider the query in Example 2. Suppose we have ex-

tracted and collected the source pro�les of the information

servers as shown in Figure 4, among many others. Using the

user query pro�le and the source pro�les, we may conclude,

without running the query, that some of the sources are ob-

viously not contributing to the answer of Q. For instance,

we can immediately determine that Sources 7, 8, and 9 are

not relevant to this query, because they are focused on Mo-

tif searches and not protein sequence similarity. We can also

conclude that Sources 4, 6, 10 are not able to contribute to

the answer of Q. However, the reasoning here is more subtle.

We are interested only in articles that are published in 2001.

However, Source 6 only has articles published before 1965.

Source 4 requires a �le input format that is not available

from the known output of any of the sources, and Source

10 only provies book information. Thus, we are left with

sources 1, 2, 3, and 5. The mechanism used in making such

routing decision will be described in Section 3.4. Readers

may refer to [7, 8] for further detail on how to obtain source

pro�le and query routing techniques.

3.4 Query Routing: The Main Steps

The ultimate goal of query routing is to constrain the search

space for a query over a large collection of available infor-

mation sources by reducing the overhead of contacting the

information sources that do not contribute to the query an-

swer.

Given a user query Q, a user query pro�le of Q, and a

set of source content and capability descriptions, we design

the query routing service as a two-phase process. At the

query re�nement phase, mechanisms are applied to re�ne the

original query into a well focused query, aiming at reducing

the false positives in the query result set and enhancing the

quality and the degree of accuracy of the results produced

from source selection. In this section, we concentrate on the

second-phase of the query routing task � source selection

and its two-step routing process. Readers may refer to [7]

for the detailed algorithms and further discussions.

Step 1: Level-one relevance pruning.

This step serves as the �rst-round selection which discovers

the candidate information sources whose content descrip-

tions are in some ways related to the scope of a query Q

(e.g., in terms of substring matching or in concept similar-

ity). Other factors such as unavailability of the sources or

a�ordability of the sources should be considered at this step

too. For level-one relevance pruning we use the user query

scope description of Q and the content and category de-

scription of the sources. Source pro�les that are redundant

(covering the same information from the same source) are

also removed at this stage. We call the set of sources se-

lected by this step as target information sources of level-one

relevance.

Consider Example 2 query, level-one relevance pruning

will prune the information sources whose contents are not

relevant to biomedical literature, protein sequence structure,



or protein sequence similarity, based on the list of source

pro�le descriptions in Figure 4, among many others. It will

�nd that sources 7, 8, and 9 are not relevant to the query

answer.

Step 2: Level-two relevance pruning.

This step prunes the information sources that have level-

one relevance but do not o�er enough query capability to

contribute to the answer of Q. The decision is made based on

the input and output arguments of Q, the user query pro�le

of Q, and the query capability descriptions of the sources.

The user query capacity description of Q and the source

pro�les are used in the level-two relevance pruning. We call

the set of sources selected by Step 2 as target information

sources of level two relevance.

The process for level-two relevance pruning has two

phases. In the �rst phase we prune the information sources

of the following three cases:

� (1) data sources that have no input or output argu-

ments, which are relevant to the arguments used in the

user query, or

� (2) data sources that have conict with the interest of

the user query (such as the query selection conditions

do not match the access constraints of the sources), or

� (3) data sources that have arguments corresponding to

the mandatory input parameters of the user query but

these arguments can only be used as input and are not

included in the list of output arguments of the sources.

The information sources selected in the �rst phase will be

passed to the second phase where more sophisticated prun-

ing is conducted in the process of generating an executable

plan of the query. For example, the following two additional

cases are pruned accordingly:

� (4) date sources (say Si) whose output capability are

not enough to satisfy the input requirement of the other

sources (say Sj) when an inter-site join from Si to Sj

is required.

� (5) Date sources whose mandatory input requirement

is higher than the input arguments that the user query

provides, and there are no other information sources

executed earlier which would have enough output ca-

pability to complement such requirement.

Consider Example 2 query, level-two relevance pruning will

further prune away Sources 4, 6, and 10 because they are

incapable of contributing to the query answer due to the

restriction on the scope of query interest (e.g., Source 10

is a bookstore not an technical article source or protein

database), or the constraints on the list of mandatory input

or output arguments of the sources (e.g., Source 4 requires

a �le input), or the conict of query interest with the access

constraints associated with the sources (e.g., Source 6 only

provides citations for articles published before 1965, whereas

the query is interested in only articles published in 2001).

In addition, there is a need to identify and prune mirrored

or replicated sources. This step is usually delayed until last

to allow for the greatest exibility in choosing the most ef-

fective data source for a particular query.

A prototype of the BioZoom query routing subsystem is

currently under testing. Figure 2 shows an example run

of the �rst and second level routing, the query scheduling,

and query execution in the �rst prototype of BioZoom. The

source capability pro�les used in this version is generated

manually. We are working on building the �rst version of the

Bio Crawlers by extending XWRAP Elite toolkit [9]. The

source capability pro�les are inferred based on the source

information collected by the Bio crawlers.

3.5 Initial Experiments

We report two experimental results in this paper. All routing

measurements were taken on a Sun E450 server, with 4 400-

MHz UltraSPARC-II processors, and 1 GB of RAM running

Solaris 7. The software was implemented in Java and run on

the Java HotSpot Client virtual machine (build 1.3.0, mixed

mode). Each experiment was run 20 times and the results

were averaged to mitigate the impact of start-up costs such

as just-in-time compilation of methods, and other execution

anomalies such as garbage collection.

The essence of routing is to determine the relevance of

a source to a particular query. There are two typical ways

in which a data source is measured for relevance: content

relevance and source capability relevance. Content relevance

is often determined by keyword relevance ranking. Source-

capability relevance selects sources that have the capability

to answer the queries.

In the �rst experiment, we vary the percentage of sources

that are categorically relevant and completely relevant at

the schema level. The �rst �gure on the left side of Figure 3

shows the execution time required for querying between 20-

1000 sources, where 30% to 40% of sources are irrelevant and

ten threads are used to retrieve data in parallel. Obviously,

query fusion for integrated access without routing performs

the worst. Query fusion with level two routing performs

better than query fusion with only level-one routing. Note

that in our routing scheme, level two routing is built on top

of level one routing results.

In the second experiment shown on the right side of Fig-

ure 3, it demonstrates that arbitrarily increasing the num-

ber of threads servicing a single query su�ers from the law

of diminishing returns. Using 20 threads rather than 10,

execution time without routing is nearly halved. However,

using 70 threads is only 14% faster than using 60 threads.

This is even more pronounced when routing is used, because

when the number of selected data sources is below 60, adding

additional threads will not speed up the process.



Figure 2: An Example Run of Query Routing and Execution in BioZoom

4 Related Work and Conclusion

The very nature of scienti�c research and discovery leads to

the continuous creation of information that is new in content

or representation or both. Despite the e�orts to �t molec-

ular biology information into standard formats and repos-

itories such as the PDB (Protein Data Bank) and NCBI,

the number of databases and their content have been grow-

ing, pushing the envelope of standardization e�orts such as

mmCIF [14]. Providing integrated and uniform access to

these databases has been a serious research challenge. Sev-

eral e�orts [2, 5, 4, 11, 13, 3] have sought to alleviate the

interoperability issue, by translating queries from a uniform

query language into the native query capabilities supported

by the individual data sources. Typically, these previous

e�orts address the interoperability problem from a digital

library point of view, i.e., they treat individual databases

as well-known sources of existing information. While they

provide a valuable service, due to the growing rate of scien-

ti�c discovery, an increasing amount of new information (the

kind of hot-o�-the-bench information that scientists would

be most interested in) falls outside the capability of these

previous interoperability systems or services.

In this paper, we address the problem of providing auto-

mated or semi-automated access to new information that has

just become available, sometimes by changing the represen-

tation format of an existing database. The lag between the

discovery and making the information available is primarily

due to the human intervention needed to translate the new

information either to an existing database format, or to aug-

ment a database with new formats or �elds. We believe that

the increasing rate of scienti�c discovery and publication will

make this problem increasingly serious, since more databases

will be augmented more frequently, or new databases will be

created to publish the new information.

We have described the BioZoom query routing scheme

for providing fast access to the growing new information

that remains elusive with the current technology. The main

contribution of the paper is the application of the concepts

and techniques called query routing to increase the degree

of automation in new information access and to reduce the

amount of unnecessary delay due to contacting sources that

cannot contribute to given queries. Query routing uses meta-

data, called source-capability pro�le, to support dynamic

matching of each query with the information sources that

are relevant to, and capable of, responding to that query. By

updating a source pro�le, new information or capabilities of

the source are immediately accessible by queries processed

through query routing. Furthermore, addition of new bioin-

formatics data sources and capabilities can be dynamically

incorporated into the subsequent execution of queries. The

main thrust of our query routing scheme is its intelligent

source selection powered by the source-pro�le based multi-

level progressive pruning strategy. Our initial experiments

show the increased bene�ts of query routing as the number

of data sources available to a query increases.
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Source 1: NCBI BLAST
Category: Protein and nucleotide similarity search; Content: sequence(s), database = fDrosophila, est human, : : : g
Query Capabilities: fprotein sequence(s; p); nucleotide sequence(s;n); database(s; db); searchtype(s; t)g,
fsimilar sequence(s; sim); alignment(s; a); sequence id(s; id)g,
f(protein sequence(s; p) ^ database ^ searchtype = (blastp _ blastx _ tblastx))_
(nucleotide sequence(s;p) ^ database ^ searchtype = (blastn _ tblastn))g .

Mirrors:Austrailia, China, Japan, Korea, Malaysia, Singapore, Thailand, USA

Source 2: KEGG
Category: Protein similarity search; Content: sequence(s), database = f Drosophila melanogaster, Homo sapiens, : : : g
Query Capabilities: fprotein sequence(s; p); nucleotide sequence(s;n); database(s; db); searchtype(s; t)g,
fsimilar sequence(s; sim); alignment(s; a); sequence id(s; id)g
f(protein sequence(s; p) ^ database ^ searchtype = blastp)_
(nucleotide sequence(s;p) ^ database ^ searchtype = blastn)g .

Source 3: PDB
Category: Protein structure search; Content: structure(t) fAll known protein structuresg
Query Capabilities: fproteinsequence(t; sq); pdb id(t; id); title(t; tt)g,
fpdb id(t; id); title(t; tt); sequence(t; sq); classification(t; c); compound(t; cmpnd); structure(t; st)g,
fproteinsequence(t; sq) _ pdb id(t; id) _ title(t; tt)g
Mirrors: San Diego Supercomputer Center; Rutgers University; National Institute of Standards and Technology;

Cambridge Crystallographic Data Centre, UK; National University of Singapore; Osaka University, Japan;

Universidade Federal de Minas Gerais, Brazil; Bio Molecular Engineering Research Center, Boston University

Brookhaven National Laboratory : : :

Source 4: VAST
Category: Protein structure similarity search; Content: structure(t), database = (non-redundant PDB, or full PDB)

Query Capabilities: fPDB file(t; pdb f); XPLOR PDB file(t; xplor pdf f); CNS deposit file(t; cns deposit f); g,
fsequence(t; sq); structure(t; st)g,
fPDB file _XPLOR PDB file _ CNS deposit fileg
Source 5: PubMed
Category: Biomedical literature; Content: Article(a)
Query Capabilities: fauthor(a; u); title(a; t); keyword(a; k); pubmed id(a; id)g,
fauthor(a; u); title(a; t); journal(a; j); pub year(a; y); volume(a; v); issue(a; i); pages(a; p); pubmed id(a; id)g,
fauthor(a; k) _ title(a; t) _ keyword(a; k)g.
Source 6: Old MEDLINE
Category: Biomedical literature; Content: Article(a), pub year(a,y) ^y < 1965
Query Capabilities: fauthor(a; u); title(a; t); keyword(a; k); pubmed id(a; id)g,
fauthor(a; u); title(a; t); journal(a; j); pub year(a; y); volume(a; v); issue(a; i); pages(a; p); pubmed id(a; id)g,
fauthor(a; k) _ title(a; t) _ keyword(a; k)g.
Source 7: GenomeNet (Japan)
Category: Motif Search Content: Motif(f); database = (Vertebrates, Virus, Insects, Plants, Bacteria,Fungi, Nematodes),

search type = ( Prosite Pattern, Prosite Pro�le, BLOCKS, ProDom, PRINTS, Pfam)

Query Capabilities: fsequence(f; s); database(f; db)g,
fexpectation(f; e); probability(f; p); description(f; d)g,
fsequence(f; s) ^ database(f; db) ^ search type(f; srcht)g.
Source 8: Stanford Motif search
Category: Motif Search Content: Motif(f); database = (BLOCKS+ and PRINTS , non-biased BLOCKS+ and PRINTS)

Query Capabilities: fsequence(f; s); database(f; db)g,
fexpectation(f; e); probability(f; p); description(f; d)g,
fsequence(f; s) ^ database(f; db)g.
Source 9: KEGG Motif
Category: Motif Search Content: Motif(f); database = (D.melanogaster, E.coli, H.sapiens : : :), Prosite patterns

Query Capabilities: fsequence(f; s); database(f; db)g,
fexpectation(f; e); probability(f; p); description(f; d)g,
fsequence(f; s) ^ database(f; db)g.
Source 10: fatbrain.com Book Store Database
Category: Technical Book Store (includuing biotech books); Content: Book(b);
Query Capabilities: ftitle(b; t); authors(b; a)g,
ftitle(b; t); authors(b; a); publisher(b; pub); year(b; y); price(b; p); isbn(b; n)g,
ftitle(b; t) _ authors(b; a) _ isbn(b; n)g.

Figure 4: A sketch of source capability description of example data sources



University of California
Lawrence Livermore National Laboratory
Technical Information Department
Livermore, CA 94551

 


